Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 21(3): 100197, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35033677

RESUMO

The gut microbiota plays an important yet incompletely understood role in the induction and propagation of ulcerative colitis (UC). Organism-level efforts to identify UC-associated microbes have revealed the importance of community structure, but less is known about the molecular effectors of disease. We performed 16S rRNA gene sequencing in parallel with label-free data-dependent LC-MS/MS proteomics to characterize the stool microbiomes of healthy (n = 8) and UC (n = 10) patients. Comparisons of taxonomic composition between techniques revealed major differences in community structure partially attributable to the additional detection of host, fungal, viral, and food peptides by metaproteomics. Differential expression analysis of metaproteomic data identified 176 significantly enriched protein groups between healthy and UC patients. Gene ontology analysis revealed several enriched functions with serine-type endopeptidase activity overrepresented in UC patients. Using a biotinylated fluorophosphonate probe and streptavidin-based enrichment, we show that serine endopeptidases are active in patient fecal samples and that additional putative serine hydrolases are detectable by this approach compared with unenriched profiling. Finally, as metaproteomic databases expand, they are expected to asymptotically approach completeness. Using ComPIL and de novo peptide sequencing, we estimate the size of the probable peptide space unidentified ("dark peptidome") by our large database approach to establish a rough benchmark for database sufficiency. Despite high variability inherent in patient samples, our analysis yielded a catalog of differentially enriched proteins between healthy and UC fecal proteomes. This catalog provides a clinically relevant jumping-off point for further molecular-level studies aimed at identifying the microbial underpinnings of UC.


Assuntos
Colite Ulcerativa , Microbiota , Cromatografia Líquida , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/microbiologia , Endopeptidases , Fezes/microbiologia , Humanos , RNA Ribossômico 16S/genética , Serina , Espectrometria de Massas em Tandem
2.
Database (Oxford) ; 20202020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32283553

RESUMO

Hypothesis generation is a critical step in research and a cornerstone in the rare disease field. Research is most efficient when those hypotheses are based on the entirety of knowledge known to date. Systematic review articles are commonly used in biomedicine to summarize existing knowledge and contextualize experimental data. But the information contained within review articles is typically only expressed as free-text, which is difficult to use computationally. Researchers struggle to navigate, collect and remix prior knowledge as it is scattered in several silos without seamless integration and access. This lack of a structured information framework hinders research by both experimental and computational scientists. To better organize knowledge and data, we built a structured review article that is specifically focused on NGLY1 Deficiency, an ultra-rare genetic disease first reported in 2012. We represented this structured review as a knowledge graph and then stored this knowledge graph in a Neo4j database to simplify dissemination, querying and visualization of the network. Relative to free-text, this structured review better promotes the principles of findability, accessibility, interoperability and reusability (FAIR). In collaboration with domain experts in NGLY1 Deficiency, we demonstrate how this resource can improve the efficiency and comprehensiveness of hypothesis generation. We also developed a read-write interface that allows domain experts to contribute FAIR structured knowledge to this community resource. In contrast to traditional free-text review articles, this structured review exists as a living knowledge graph that is curated by humans and accessible to computational analyses. Finally, we have generalized this workflow into modular and repurposable components that can be applied to other domain areas. This NGLY1 Deficiency-focused network is publicly available at http://ngly1graph.org/. AVAILABILITY AND IMPLEMENTATION: Database URL: http://ngly1graph.org/. Network data files are at: https://github.com/SuLab/ngly1-graph and source code at: https://github.com/SuLab/bioknowledge-reviewer. CONTACT: asu@scripps.edu.


Assuntos
Pesquisa Biomédica/métodos , Biologia Computacional/métodos , Bases de Dados Factuais , Bases de Conhecimento , Animais , Pesquisa Biomédica/estatística & dados numéricos , Biologia Computacional/estatística & dados numéricos , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Curadoria de Dados/métodos , Mineração de Dados/métodos , Humanos , Internet , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Revisões Sistemáticas como Assunto
4.
J Proteome Res ; 17(9): 2978-2986, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30019906

RESUMO

The lysis and extraction of soluble bacterial proteins from cells is a common practice for proteomics analyses, but insoluble bacterial biomasses are often left behind. Here, we show that with triflic acid treatment, the insoluble bacterial biomass of Gram- and Gram+ bacteria can be rendered soluble. We use LC-MS/MS shotgun proteomics to show that bacterial proteins in the soluble and insoluble postlysis fractions differ significantly. Additionally, in the case of Gram- Pseudomonas aeruginosa, triflic acid treatment enables the enrichment of cell-envelope-associated proteins. Finally, we apply triflic acid to a human microbiome sample to show that this treatment is robust and enables the identification of a new, complementary subset of proteins from a complex microbial mixture.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Membrana/isolamento & purificação , Mesilatos/química , Proteômica/métodos , Pseudomonas aeruginosa/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Cromatografia Líquida , Misturas Complexas/química , Microbioma Gastrointestinal/genética , Humanos , Células Jurkat , Metagenoma , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Sonicação/métodos , Espectrometria de Massas em Tandem
5.
Proteomics ; 18(3-4)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29319931

RESUMO

Metaproteomics can greatly assist established high-throughput sequencing methodologies to provide systems biological insights into the alterations of microbial protein functionalities correlated with disease-associated dysbiosis of the intestinal microbiota. Here, the authors utilize the well-characterized murine T cell transfer model of colitis to find specific changes within the intestinal luminal proteome associated with inflammation. MS proteomic analysis of colonic samples permitted the identification of ≈10 000-12 000 unique peptides that corresponded to 5610 protein clusters identified across three groups, including the colitic Rag1-/- T cell recipients, isogenic Rag1-/- controls, and wild-type mice. The authors demonstrate that the colitic mice exhibited a significant increase in Proteobacteria and Verrucomicrobia and show that such alterations in the microbial communities contributed to the enrichment of specific proteins with transcription and translation gene ontology terms. In combination with 16S sequencing, the authors' metaproteomics-based microbiome studies provide a foundation for assessing alterations in intestinal luminal protein functionalities in a robust and well-characterized mouse model of colitis, and set the stage for future studies to further explore the functional mechanisms of altered protein functionalities associated with dysbiosis and inflammation.


Assuntos
Proteínas de Bactérias/metabolismo , Colite/metabolismo , Colo/metabolismo , Inflamação/metabolismo , Microbiota , Proteoma/análise , Animais , Colite/microbiologia , Colo/microbiologia , Modelos Animais de Doenças , Inflamação/microbiologia , Camundongos , Camundongos Endogâmicos C57BL
6.
Database (Oxford) ; 2017(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28365742

RESUMO

With the advancement of genome-sequencing technologies, new genomes are being sequenced daily. Although these sequences are deposited in publicly available data warehouses, their functional and genomic annotations (beyond genes which are predicted automatically) mostly reside in the text of primary publications. Professional curators are hard at work extracting those annotations from the literature for the most studied organisms and depositing them in structured databases. However, the resources don't exist to fund the comprehensive curation of the thousands of newly sequenced organisms in this manner. Here, we describe WikiGenomes (wikigenomes.org), a web application that facilitates the consumption and curation of genomic data by the entire scientific community. WikiGenomes is based on Wikidata, an openly editable knowledge graph with the goal of aggregating published knowledge into a free and open database. WikiGenomes empowers the individual genomic researcher to contribute their expertise to the curation effort and integrates the knowledge into Wikidata, enabling it to be accessed by anyone without restriction. Database URL: www.wikigenomes.org.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genoma , Internet , Anotação de Sequência Molecular/métodos , Anotação de Sequência Molecular/normas
7.
J Proteome Res ; 16(2): 1014-1026, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28052195

RESUMO

Tandem mass spectrometry based shotgun proteomics of distal gut microbiomes is exceedingly difficult due to the inherent complexity and taxonomic diversity of the samples. We introduce two new methodologies to improve metaproteomic studies of microbiome samples. These methods include the stable isotope labeling in mammals to permit protein quantitation across two mouse cohorts as well as the application of activity-based probes to enrich and analyze both host and microbial proteins with specific functionalities. We used these technologies to study the microbiota from the adoptive T cell transfer mouse model of inflammatory bowel disease (IBD) and compare these samples to an isogenic control, thereby limiting genetic and environmental variables that influence microbiome composition. The data generated highlight quantitative alterations in both host and microbial proteins due to intestinal inflammation and corroborates the observed phylogenetic changes in bacteria that accompany IBD in humans and mouse models. The combination of isotope labeling with shotgun proteomics resulted in the total identification of 4434 protein clusters expressed in the microbial proteomic environment, 276 of which demonstrated differential abundance between control and IBD mice. Notably, application of a novel cysteine-reactive probe uncovered several microbial proteases and hydrolases overrepresented in the IBD mice. Implementation of these methods demonstrated that substantial insights into the identity and dysregulation of host and microbial proteins altered in IBD can be accomplished and can be used in the interrogation of other microbiome-related diseases.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Microbioma Gastrointestinal/genética , Doenças Inflamatórias Intestinais/microbiologia , Metagenoma , Proteoma/isolamento & purificação , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromatografia Líquida , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Deleção de Genes , Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Intestinos/microbiologia , Intestinos/patologia , Marcação por Isótopo , Camundongos , Proteoma/genética , Proteoma/metabolismo , Espectrometria de Massas em Tandem
8.
BMC Genomics ; 17(1): 642, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27528457

RESUMO

BACKGROUND: Mass spectrometry-based shotgun proteomics experiments rely on accurate matching of experimental spectra against a database of protein sequences. Existing computational analysis methods are limited in the size of their sequence databases, which severely restricts the proteomic sequencing depth and functional analysis of highly complex samples. The growing amount of public high-throughput sequencing data will only exacerbate this problem. We designed a broadly applicable metaproteomic analysis method (ComPIL) that addresses protein database size limitations. RESULTS: Our approach to overcome this significant limitation in metaproteomics was to design a scalable set of sequence databases assembled for optimal library querying speeds. ComPIL was integrated with a modified version of the search engine ProLuCID (termed "Blazmass") to permit rapid matching of experimental spectra. Proof-of-principle analysis of human HEK293 lysate with a ComPIL database derived from high-quality genomic libraries was able to detect nearly all of the same peptides as a search with a human database (~500x fewer peptides in the database), with a small reduction in sensitivity. We were also able to detect proteins from the adenovirus used to immortalize these cells. We applied our method to a set of healthy human gut microbiome proteomic samples and showed a substantial increase in the number of identified peptides and proteins compared to previous metaproteomic analyses, while retaining a high degree of protein identification accuracy and allowing for a more in-depth characterization of the functional landscape of the samples. CONCLUSIONS: The combination of ComPIL with Blazmass allows proteomic searches to be performed with database sizes much larger than previously possible. These large database searches can be applied to complex meta-samples with unknown composition or proteomic samples where unexpected proteins may be identified. The protein database, proteomic search engine, and the proteomic data files for the 5 microbiome samples characterized and discussed herein are open source and available for use and additional analysis.


Assuntos
Bases de Dados de Proteínas , Proteoma , Proteômica/métodos , Ferramenta de Busca , Proteínas de Bactérias , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Humanos , Peptídeos , Reprodutibilidade dos Testes
9.
Genome Biol ; 17(1): 91, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27154141

RESUMO

Efficient tools for data management and integration are essential for many aspects of high-throughput biology. In particular, annotations of genes and human genetic variants are commonly used but highly fragmented across many resources. Here, we describe MyGene.info and MyVariant.info, high-performance web services for querying gene and variant annotation information. These web services are currently accessed more than three million times permonth. They also demonstrate a generalizable cloud-based model for organizing and querying biological annotation information. MyGene.info and MyVariant.info are provided as high-performance web services, accessible at http://mygene.info and http://myvariant.info . Both are offered free of charge to the research community.


Assuntos
Variação Genética , Anotação de Sequência Molecular , Análise de Sequência de DNA , Software , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Humanos , Internet , Interface Usuário-Computador
10.
Curr Metabolomics ; 4(2): 116-120, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28090435

RESUMO

ABSTRACT BACKGROUND: Isotopic Ratio Outlier Analysis (IROA) is an untargeted metabolomics method that uses stable isotopic labeling and LC-HRMS for identification and relative quantification of metabolites in a biological sample under varying experimental conditions. OBJECTIVE: We demonstrate a method using high-sensitivity 13C NMR to identify an unknown metabolite isolated from fractionated material from an IROA LC-HRMS experiment. METHODS: IROA samples from the nematode Caenorhabditis elegans were fractionated using LC-HRMS using 5 repeated injections and collecting 30 sec fractions. These were concentrated and analyzed by 13C NMR. RESULTS: We isotopically labeled samples of C. elegans and collected 2 adjacent LC fractions. By HRMS, one contained at least 2 known metabolites, phenylalanine and inosine, and the other contained tryptophan and an unknown feature with a monoisotopic mass of m/z 380.0742 [M+H]+. With NMR, we were able to easily verify the known compounds, and we then identified the spin system networks responsible for the unknown resonances. After searching the BMRB database and comparing the molecular formula from LC-HRMS, we determined that the fragments were a modified anthranilate and a glucose modified by a phosphate. We then performed quantum chemical NMR chemical shift calculations to determine the most likely isomer, which was 3'-O-phospho-ß-D-glucopyranosyl-anthranilate. This compound had previously been found in the same organism, validating our approach. CONCLUSION: We were able to dereplicate previously known metabolites and identify a metabolite that was not in databases by matching resonances to NMR databases and using chemical shift calculations to determine the correct isomer. This approach is efficient and can be used to identify unknown compounds of interest using the same material used for IROA.

11.
Front Plant Sci ; 6: 611, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379677

RESUMO

Compound identification is a major bottleneck in metabolomics studies. In nuclear magnetic resonance (NMR) investigations, resonance overlap often hinders unambiguous database matching or de novo compound identification. In liquid chromatography-mass spectrometry (LC-MS), discriminating between biological signals and background artifacts and reliable determination of molecular formulae are not always straightforward. We have designed and implemented several NMR and LC-MS approaches that utilize (13)C, either enriched or at natural abundance, in metabolomics applications. For LC-MS applications, we describe a technique called isotopic ratio outlier analysis (IROA), which utilizes samples that are isotopically labeled with 5% (test) and 95% (control) (13)C. This labeling strategy leads to characteristic isotopic patterns that allow the differentiation of biological signals from artifacts and yield the exact number of carbons, significantly reducing possible molecular formulae. The relative abundance between the test and control samples for every IROA feature can be determined simply by integrating the peaks that arise from the 5 and 95% channels. For NMR applications, we describe two (13)C-based approaches. For samples at natural abundance, we have developed a workflow to obtain (13)C-(13)C and (13)C-(1)H statistical correlations using 1D (13)C and (1)H NMR spectra. For samples that can be isotopically labeled, we describe another NMR approach to obtain direct (13)C-(13)C spectroscopic correlations. These methods both provide extensive information about the carbon framework of compounds in the mixture for either database matching or de novo compound identification. We also discuss strategies in which (13)C NMR can be used to identify unknown compounds from IROA experiments. By combining technologies with the same samples, we can identify important biomarkers and corresponding metabolites of interest.

12.
Integr Comp Biol ; 55(3): 478-85, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26141866

RESUMO

This review provides an overview of two complementary approaches to identify biologically active compounds for studies in chemical ecology. The first is activity-guided fractionation and the second is metabolomics, particularly focusing on a new liquid chromatography-mass spectrometry-based method called isotopic ratio outlier analysis. To illustrate examples using these approaches, we review recent experiments using Caenorhabditis elegans and related free-living nematodes.


Assuntos
Produtos Biológicos/metabolismo , Fracionamento Químico/métodos , Quimiotaxia , Metabolômica/métodos , Nematoides/fisiologia , Animais , Caenorhabditis elegans/fisiologia , Cromatografia Líquida , Espectrometria de Massas
13.
Anal Chem ; 86(18): 9242-50, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25140385

RESUMO

(13)C NMR has many advantages for a metabolomics study, including a large spectral dispersion, narrow singlets at natural abundance, and a direct measure of the backbone structures of metabolites. However, it has not had widespread use because of its relatively low sensitivity compounded by low natural abundance. Here we demonstrate the utility of high-quality (13)C NMR spectra obtained using a custom (13)C-optimized probe on metabolomic mixtures. A workflow was developed to use statistical correlations between replicate 1D (13)C and (1)H spectra, leading to composite spin systems that can be used to search publicly available databases for compound identification. This was developed using synthetic mixtures and then applied to two biological samples, Drosophila melanogaster extracts and mouse serum. Using the synthetic mixtures we were able to obtain useful (13)C-(13)C statistical correlations from metabolites with as little as 60 nmol of material. The lower limit of (13)C NMR detection under our experimental conditions is approximately 40 nmol, slightly lower than the requirement for statistical analysis. The (13)C and (1)H data together led to 15 matches in the database compared to just 7 using (1)H alone, and the (13)C correlated peak lists had far fewer false positives than the (1)H generated lists. In addition, the (13)C 1D data provided improved metabolite identification and separation of biologically distinct groups using multivariate statistical analysis in the D. melanogaster extracts and mouse serum.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Drosophila melanogaster/metabolismo , Metabolômica , Soro/metabolismo , Animais , Bases de Dados Factuais , Modelos Animais de Doenças , Camundongos , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Espectroscopia de Prótons por Ressonância Magnética , Soro/química
14.
Anal Chem ; 85(24): 11858-11865, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24274725

RESUMO

We demonstrate the global metabolic analysis of Caenorhabditis elegans stress responses using a mass-spectrometry-based technique called isotopic ratio outlier analysis (IROA). In an IROA protocol, control and experimental samples are isotopically labeled with 95 and 5% (13)C, and the two sample populations are mixed together for uniform extraction, sample preparation, and LC-MS analysis. This labeling strategy provides several advantages over conventional approaches: (1) compounds arising from biosynthesis are easily distinguished from artifacts, (2) errors from sample extraction and preparation are minimized because the control and experiment are combined into a single sample, (3) measurement of both the molecular weight and the exact number of carbon atoms in each molecule provides extremely accurate molecular formulas, and (4) relative concentrations of all metabolites are easily determined. A heat-shock perturbation was conducted on C. elegans to demonstrate this approach. We identified many compounds that significantly changed upon heat shock, including several from the purine metabolism pathway. The metabolomic response information by IROA may be interpreted in the context of a wealth of genetic and proteomic information available for C. elegans . Furthermore, the IROA protocol can be applied to any organism that can be isotopically labeled, making it a powerful new tool in a global metabolomics pipeline.


Assuntos
Caenorhabditis elegans/metabolismo , Espectrometria de Massas/métodos , Metabolômica/métodos , Animais , Caenorhabditis elegans/fisiologia , Resposta ao Choque Térmico , Marcação por Isótopo , Purinas/metabolismo
15.
ACS Chem Biol ; 8(2): 309-13, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23163740

RESUMO

Caenorhabditis elegans lives in compost and decaying fruit, eats bacteria and is exposed to pathogenic microbes. We show that C. elegans is able to modify diverse microbial small-molecule toxins via both O- and N-glucosylation as well as unusual 3'-O-phosphorylation of the resulting glucosides. The resulting glucosylated derivatives have significantly reduced toxicity to C. elegans, suggesting that these chemical modifications represent a general mechanism for worms to detoxify their environments.


Assuntos
Caenorhabditis elegans/metabolismo , Fenazinas/metabolismo , Fenazinas/toxicidade , Animais , Biodegradação Ambiental , Relação Dose-Resposta a Droga , Estrutura Molecular , Fenazinas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/toxicidade , Relação Estrutura-Atividade
16.
Appl Environ Microbiol ; 77(19): 6867-77, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21821766

RESUMO

Little is known about how genetic variation at the nucleotide level contributes to competitive fitness within species. During a 6,000-generation study of Bacillus subtilis evolved under relaxed selection for sporulation, a new strain, designated WN716, emerged with significantly different colony and cell morphologies; loss of sporulation, competence, acetoin production, and motility; multiple auxotrophies; and increased competitive fitness (H. Maughan and W. L. Nicholson, Appl. Environ. Microbiol. 77:4105-4118, 2011). The genome of WN716 was analyzed by OpGen optical mapping, whole-genome 454 pyrosequencing, and the CLC Genomics Workbench. No large chromosomal rearrangements were found; however, 34 single-nucleotide polymorphisms (SNPs) and +1 frameshifts were identified in WN716 that resulted in amino acid changes in coding sequences of annotated genes, and 11 SNPs were located in intergenic regions. Several classes of genes were affected, including biosynthetic pathways, sporulation, competence, and DNA repair. In several cases, attempts were made to link observed phenotypes of WN716 with the discovered mutations, with various degrees of success. For example, a +1 frameshift was identified at codon 13 of sigW, the product of which (SigW) controls a regulon of genes involved in resistance to bacteriocins and membrane-damaging antibiotics. Consistent with this finding, WN716 exhibited sensitivity to fosfomycin and to a bacteriocin produced by B. subtilis subsp. spizizenii and exhibited downregulation of SigW-dependent genes on a transcriptional microarray, consistent with WN716 carrying a knockout of sigW. The results suggest that propagation of B. subtilis for less than 2,000 generations in a nutrient-rich environment where sporulation is suppressed led to rapid initiation of genomic erosion.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/isolamento & purificação , Análise Mutacional de DNA , Mutação , Seleção Genética , Esporos Bacterianos/crescimento & desenvolvimento , Acetoína/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Competência de Transformação por DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Genótipo , Locomoção , Fenótipo , Análise de Sequência de DNA , Esporos Bacterianos/genética , Esporos Bacterianos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...